P5 PRESENTATION BY BIRGIT LIGTVOET – Crowdsensing as a tool for up-to-date road asset distress detection

Crowdsensing as a tool for up-to-date road asset distress detection

P5 presentation DATE, TIME AND LOCATION TO BE UPDATED

blog image-01.png

Mentors:
Main mentor: Ir. E. Verbree (Edward) – TU Delft
Second mentor: Dr.Ir. B.G.H Gorte  (Ben) – TU Delft
Company advisor:  Dr.Ir. H.K.M. van de Ruitenbeek (Martinus) – VolkerInfra
Co-reader: A. Diakité (Abdoulaye) – TU Delft

Abstract

Contractors are moving from traditional maintenance to preventive maintenance. To apply preventive maintenance, up-to-date data is required which is unavailable. The goal is to research the applicability of crowdsensing to detect road pavement distresses, and to investigate how the positions of these detections can be used to gain information on a road pavement section.

The construction sector is currently moving from traditional maintenance contracts, where maintenance was a pay per bill business, to contracts focused on the performance and availability of assets. These types of contracts shift the risk during the maintenance phase from the government to the contractor. The contractor receives a fine if either the minimum performance or the availability is not met. This fine in combination with the risk of unforeseen maintenance costs creates a demand for more efficient maintenance methods like preventive maintenance. However, in the field of road asset management there is a knowledge gap in how road pavement distresses develop over time.  To fill this knowledge gap, up-to-date information is required. The up-to-date information cannot be provided using the current high quality methods due to the limited availability of equipment.

In this research,  raw data is gathered on the state of the road though crowdsourcing with smartphones. This data is then pre-processed by signal analysis, positioning analysis and event detection to retain only the information which describes the occurrence of a road pavement distress . Next a database analysis consisting of clustering, asset linking and averaging is performed to gather information on the measurements of an instance of road pavement distress. The position of the instance of road pavement distress can be seen as the position of a virtual sensor. A virtual sensor groups events together from multiple smartphones. The location of the virtual sensor is linked to the location of the nearest road pavement asset, allowing asset managers, the people who plan maintenance tasks at contractors, to send their  maintenance crew to the correct location.

The resulting information from the local analysis and the database analysis shows that the detection of road pavement distress is possible by using crowdsourcing. The position of the virtual sensor increases in accuracy when more data is used.  However, It is possible that two different virtual sensors can be merged due to positioning errors. It is also possible to connect the virtual sensors position to a real world asset location by using the Dutch national road sections and the hectometre posts.  The resulting information can be used to get an indication on the status of different locations.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s